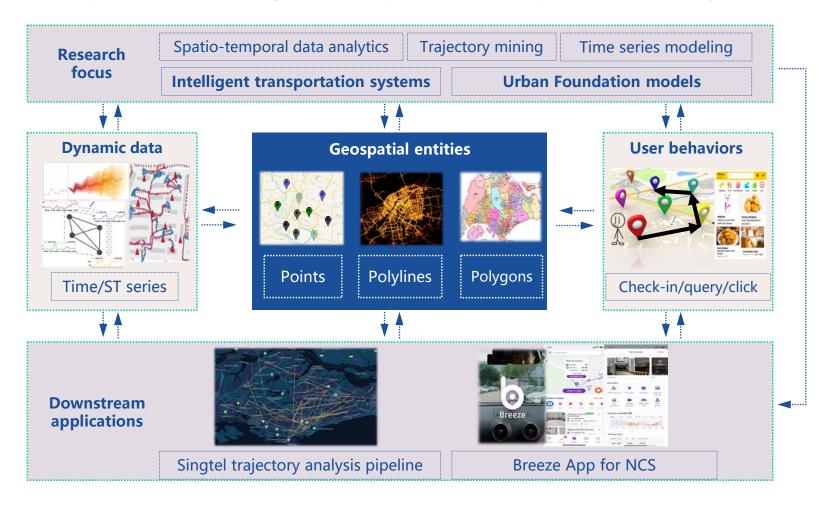


Geospatial Entity Representation: A Step Towards City Foundation Models

Gao Cong
Nanyang Technological University
Singapore

Research Overview

- Urban intelligence
 - Spatio-temporal data mining and analytics, smart city, user modeling



Outline

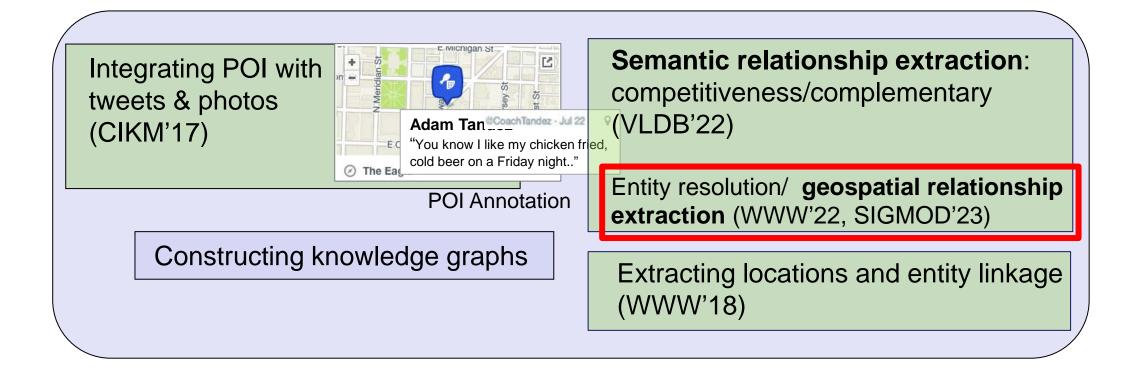
- Target on a specific problem on point spatial entity
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
 - Spatial relationship extraction (SIGMOD'23)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

Our Research on Point Spatial Entity

Geospatial IR
(Spatial keyword query)
(VLDB'09 --)

POI / User recommendation (SIGIR'13 --)

POI data exploration (SIGMOD'18)



Spatial Keyword Query (Geographic IR)

Take query keywords and location as input and output retrieved objects/documents

Applications of spatial ke

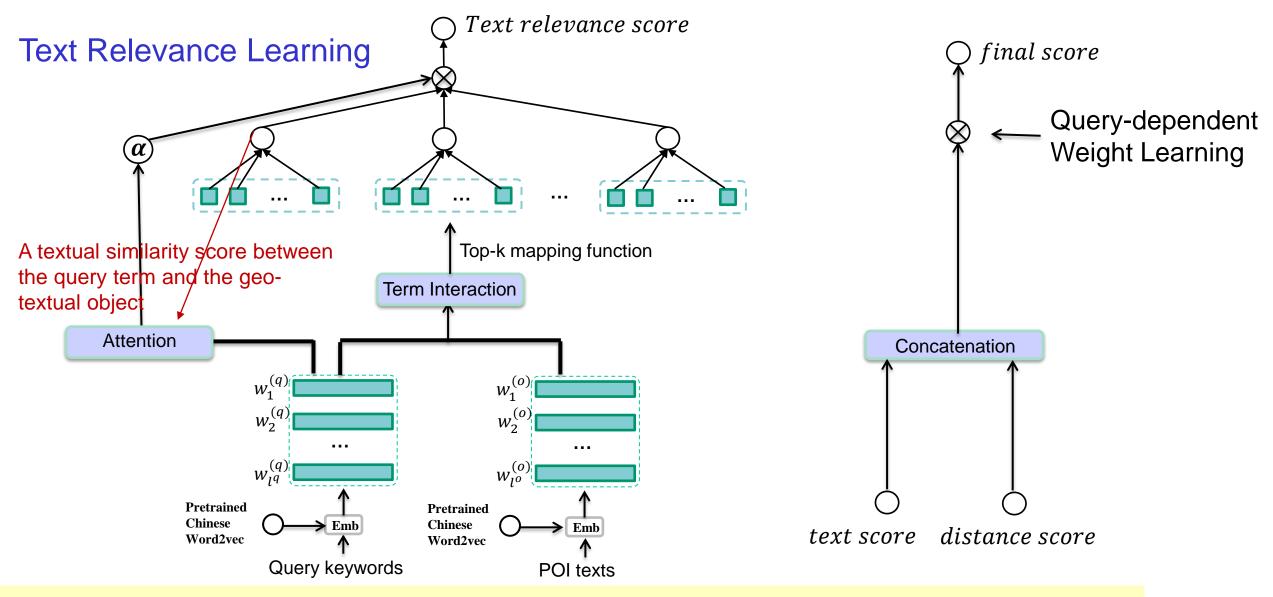
Geographic search €

location-based servi

locally targeted web

Spatial Keyword Query Example on Yelp (or Meituan)

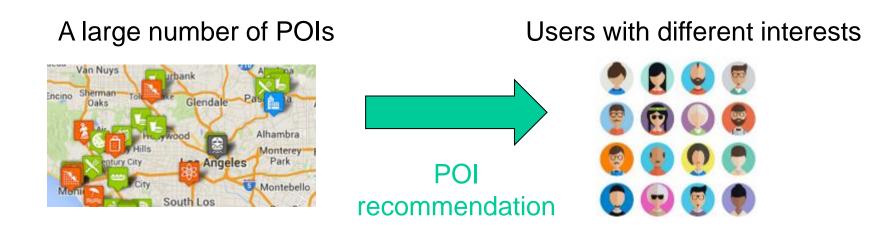
Geospatial entity representation learning



Shang Liu, Gao Cong, Kaiyu Feng, Wanli Gu, Fuzheng Zhang: Effectiveness Perspectives and a Deep Relevance Model for Spatial Keyword Queries. SIGMOD 2023

POI recommendation

 Given a set of POIs, and a set of users each associated with a set of visited POIs, POI recommendation is to recommend for each user new POIs that are likely to be visited.



Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, Nadia Magnenat-Thalmann. Time-aware point-of-interest recommendation. SIGIR 2013:

Geospatial database

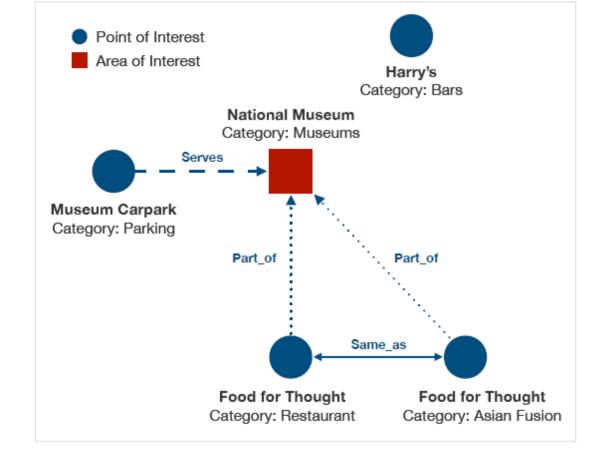
Name	Lat	Long	Address	Category
National Museum	1.29682	103.84877	93 Stamford Rd, 178897	Museums
Food for Thought	1.2963	103.84876	93 Stamford Road #01-04, National Museum, 178897	Asian Fusion
Museum Carpark	1.296509	103.84794		Parking
Harry's	1.2976	103.84905	90 Stamford Rd, 178903	Bars
Food for Thought	1.29675	103.8486		Restaurant

Geospatial DB

Although convenient, this representation hinders the exploration of **geospatial** relationships between the entities

Geospatial KG

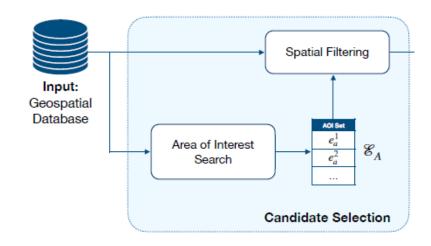
- Relationships between the entities exist and can be captured in a KG representation
- Knowledge Graphs are ubiquitous today and offer several advantages:
 - Machine-readable format
 - Can represent both entities and their relations
 - Widely adopted in AI applications
- Existing geoKGs represent only coarsegrained relationships



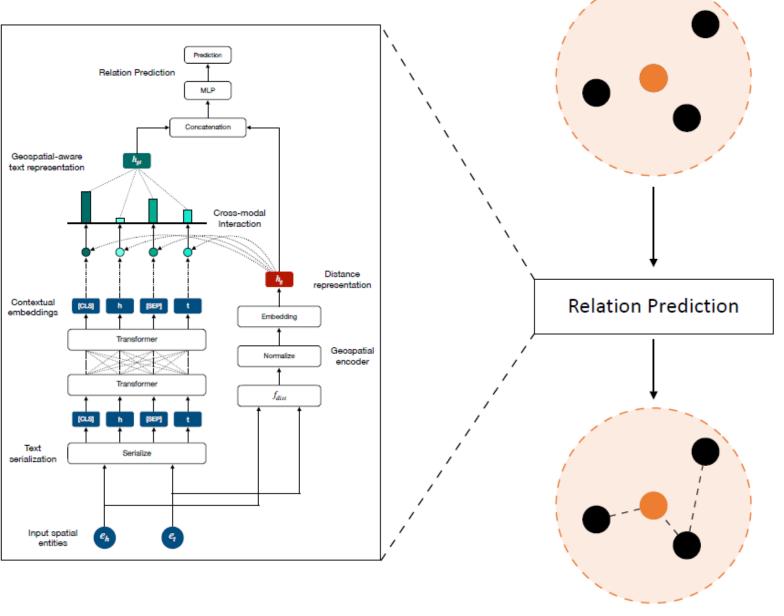
YAGO2Geo

DBPedia

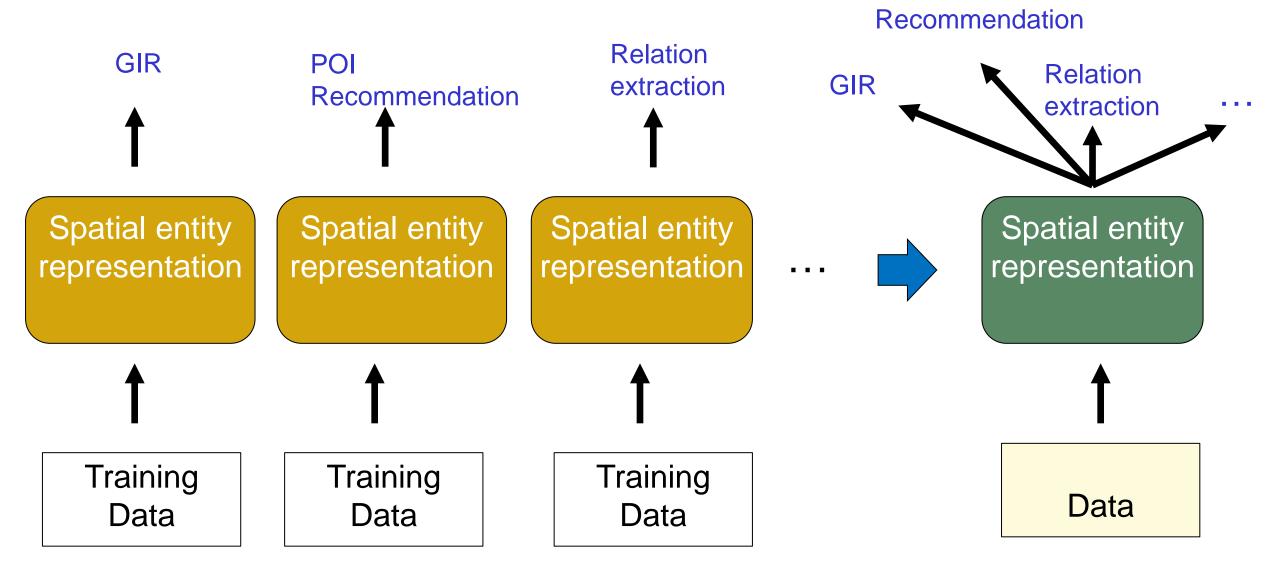
Proposed solution



- Candidate Selection Step: Aim relationships
- Relation Prediction: Aim at ide
- The KG refinement: Aim to extra correctness



A Summary

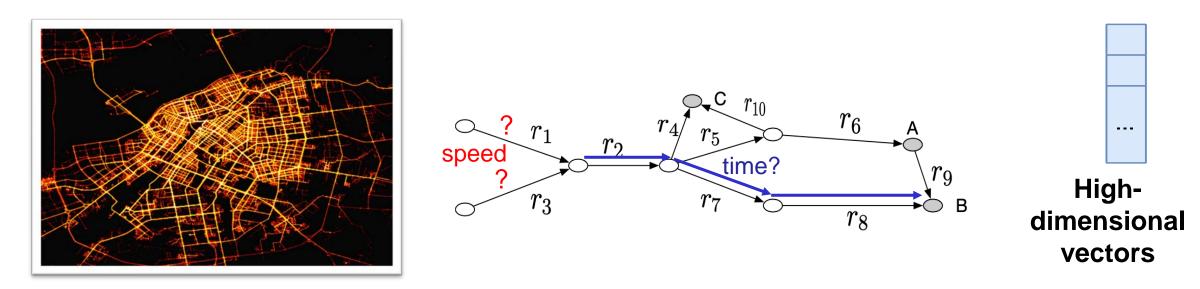


Outline

- Target on a specific problem on point spatial entity
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
 - Spatial relationship extraction (SIGMOD'23)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

Representation Learning for Road Networks

▶ Motivation: numerous applications are built upon road networks, such as travel time estimation, traffic inference, etc.

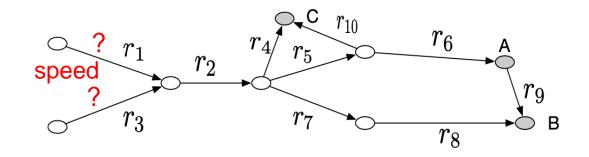


- Dijective: derive effective representations that are robust and generic for downstream applications.
 - Road segment-based & trajectory-based applications

Experiments

▷ Road segment-based application result:

Task	Road Label Classification					Traffic Inference			
	Chengdu		Xi	'an	Che	ngdu	Xi'an		
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	MAE	RMSE	MAE	RMSE	
DW	0.522	0.493	0.552	0.524	7.32	9.14	6.78	8.57	
node2vec	0.524	0.495	0.586	0.559	7.12	9.00	6.41	8.22	
GAE	0.432	0.328	0.447	0.339	6.91	8.72	6.41	8.39	
GraphSAGE	0.452	0.324	0.466	0.347	6.48	8.52	6.12	7.98	
RFN	0.516	0.484	0.577	0.570	6.89	8.77	6.57	8.43	
IRN2Vec	0.497	0.458	0.531	0.506	6.52	8.52	6.60	8.59	
HRNR	0.541	0.527	0.631	0.609	7.03	8.82	6.52	8.45	
Toast	0.602	0.599	0.692	0.659	5.95	7.70	5.71	7.44	



Experiments

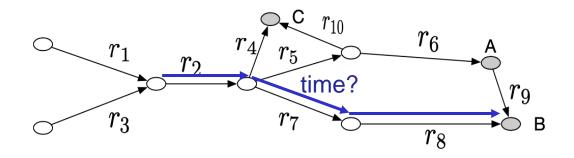
> Trajectory-based application result

Trajectory similarity search

	Che	engdu	Xi'an		
	MR HR@10		MR	HR@10	
para2vec	216.92	0.251	279.38	0.205	
t2vec	46.17	0.781	38.67	0.806	
LCSS	67.72	0.487	83.94	0.469	
EDR	458.20	0.174	529.74	0.119	
Fréchet	21.17	0.847	22.79	0.894	
Toast	10.10	0.885	13.71	0.905	

Travel time estimation

	Chei	ngdu	Xi'an		
	MAE	RMSE MAE RM		RMSE	
para2vec	220.45	302.72	244.73	345.49	
t2vec	165.18	240.72	207.56	311.04	
Road-Pool	151.80	223.02	185.47	293.82	
Toast	127.80	190.86	175.68	265.09	

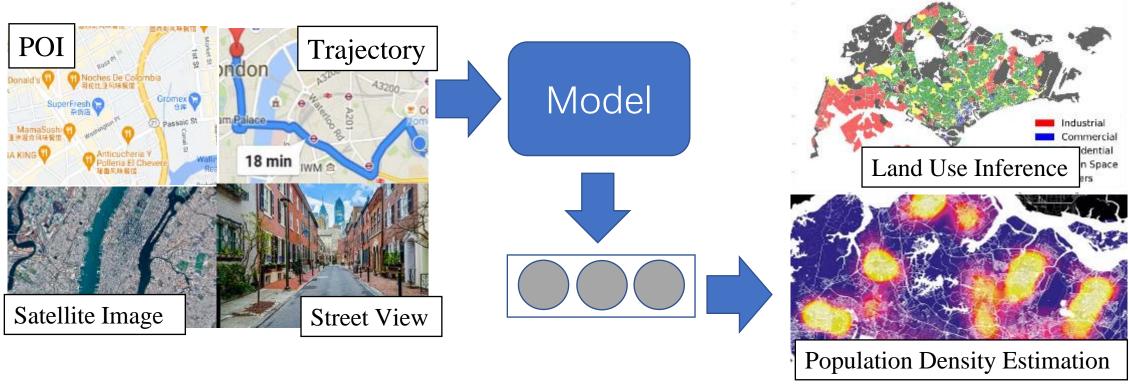


Outline

- Target on a specific problem on point spatial entity
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
 - Spatial relationship extraction (SIGMOD'23)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

Problem of Urban Region Representation Learning

 Urban Region Representation Learning aims at learning effective feature vectors for urban regions to serve various downstream tasks.



Data

Representations

Tasks

Our motivations

An Example Building Group (Singapore Public House)

We focus on **OSM buildings**.

- Buildings, (or formally, building footprints), refer to the 2-D building polygon on the map
 - size, height, type, name...
- Building groups refers to the collection of buildings in a defined spatial area.
 - We use OSM road networks to partition buildings into building groups.

Introduction

Industrial Area Residential Area

-incar-

Example Building Groups with Specific Urban Functions

Comparing to other data types, building data has **advantages**:

Effectiveness

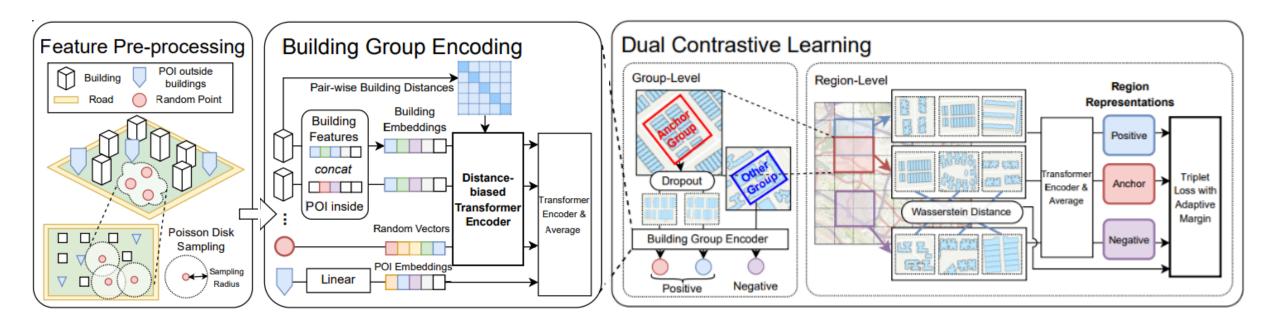
• Buildings directly carrying urban functions.

Availability

Buildings are readily available in OSM

Method

- **1. Partition** the city into building groups with road network.
- 2. Encode building groups with POIs and regions with Transformer-based encoders.
- 3. Train the encoder with Group-level and Region-level contrastive learning



Experiments: Land Use Inference

 Infer 5 types of land use (Residential, Industrial, Commercial, Open Space, Other)

Table 2: Land Use Inference in Singapore and New York City

Models		Singapore		New York City				
111041015	L1↓	KL↓	Cosine↑	L1↓	KL↓	Cosine [†]		
Urban2Vec	0.657±0.033	0.467±0.043	0.804±0.017	0.473±0.018	0.295±0.015	0.890±0.007		
Place2Vec	0.645 ± 0.039	0.451 ± 0.047	0.812 ± 0.018	0.518 ± 0.016	0.308 ± 0.012	0.878 ± 0.005		
Doc2Vec	0.679 ± 0.050	0.469 ± 0.058	0.789 ± 0.027	0.506 ± 0.015	0.299 ± 0.016	0.885 ± 0.008		
GAE	0.759 ± 0.040	0.547 ± 0.051	0.765 ± 0.022	0.589 ± 0.011	0.365 ± 0.011	0.855 ± 0.007		
DGI	0.598 ± 0.029	0.372 ± 0.032	0.846 ± 0.012	0.433 ± 0.009	0.237 ± 0.012	0.907 ± 0.005		
Transformer	0.556 ± 0.046	0.357 ± 0.070	0.850 ± 0.026	0.436 ± 0.020	0.251 ± 0.018	0.903 ± 0.008		
RegionDCL-no random	0.535±0.054	0.321±0.066	0.863±0.030	0.422±0.011	0.234±0.010	0.910±0.005		
RegionDCL-fixed margin	0.515 ± 0.042	0.303 ± 0.040	0.872 ± 0.020	0.426 ± 0.011	0.248 ± 0.018	0.905 ± 0.008		
RegionDCL	$0.498 {\pm} 0.038$	$0.294 {\pm} 0.047$	$\bf0.879 {\pm} 0.021$	0.418 ± 0.010	$0.229 {\pm} 0.008$	0.912 ± 0.004		

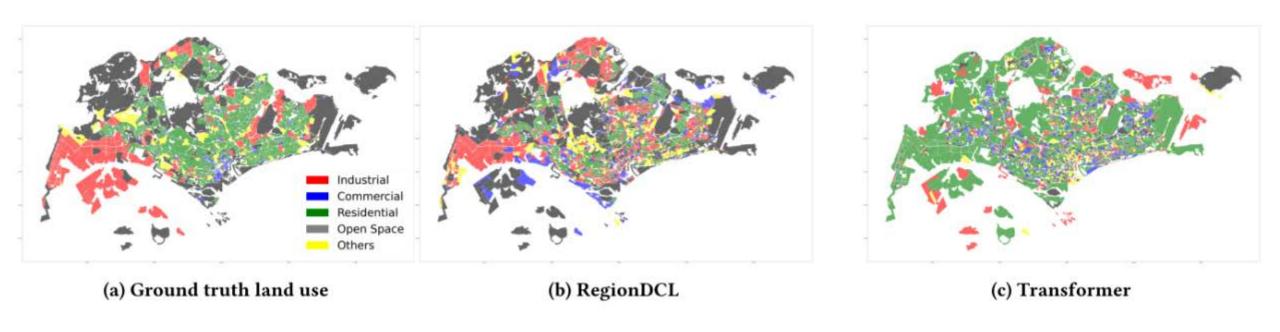
Experiments: Population Density Inference

• Similar results in inferring the population density within regions

Table 3: Population Density Inference in Singapore and New York City

Models		Singapore		New York City				
Wodels	MAE↓ RMSE↓ R		R ² ↑	MAE↓	RMSE↓	R ² ↑		
Urban2Vec	6667.84±623.27	8737.27±902.41	0.303±0.119	5328.38±200.58	7410.42±261.89	0.522±0.028		
Place2Vec	6952.34±713.30	9696.31±1239.65	0.171 ± 0.121	8109.79±175.18	10228.61±261.43	0.096 ± 0.043		
Doc2Vec	6982.85±650.76	9506.81±1052.25	0.206 ± 0.062	7734.56±247.99	9827.56±354.51	0.166 ± 0.031		
GAE	7183.24±579.82	9374.20±913.56	0.163 ± 0.112	8010.73±290.33	10341.09±362.28	0.071 ± 0.027		
DGI	6423.44±671.25	8495.16±972.87	0.305 ± 0.151	5330.11±261.77	7381.92±358.09	0.526 ± 0.032		
Transformer	6837.67±716.28	9042.02 ± 1032.99	0.269 ± 0.081	5345.17 ± 216.30	7379.47±308.36	0.522 ± 0.039		
RegionDCL-no random	6400.50±630.35	8437.89±993.41	0.364±0.075	5228.27±210.46	7278.70±322.85	0.535±0.040		
RegionDCL-fixed margin	6237.61±647.54	8387.56±948.78	0.365 ± 0.107	5125.66±184.27	7159.65±250.12	0.551 ± 0.033		
RegionDCL	$5807.54 {\pm} 522.74$	$7942.74 {\pm} 779.44$	$\bf 0.427 \!\pm\! 0.108$	$5020.20{\pm}216.63$	$6960.51 {\pm} 282.35$	0.575 ± 0.039		

Visualization



- Cluster the building group embeddings via K-Means
- Ours are visually close to the Singapore land use ground truth
- Baseline fails.

Outline

- Target on a specific problem on point spatial entity
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
 - Spatial relationship extraction (SIGMOD'23)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

Foundation Models

Task-Specific Models

Training **specific** models for **specific** tasks

Question Answering Models

Machine Translation Models

Common Sensing Reasoning Models

Reading Comprehension Models

Natural Language Inference Models

Image Classification Models

Text-to-image Generation Models

Image Editing Models

Paradigm

shift

Foundation Models

A large task-agnostic pre-trained model which can be adapted via fine-tuning or few-shot/zero-shot learning on a wide range of domains. (Bommasani et al, 2021)

GPT-3 (Brown et al., 2020)

Few-shot Adaptation

Various NLP Tasks

- Closed Book Question Answering
- Machine Translation
- Common Sense Reasoning
- Reading Comprehension
- Natural Language Inference
- ...

DALL-E 2 (Ramesh et al., 2022)

Zero-shot Transfer

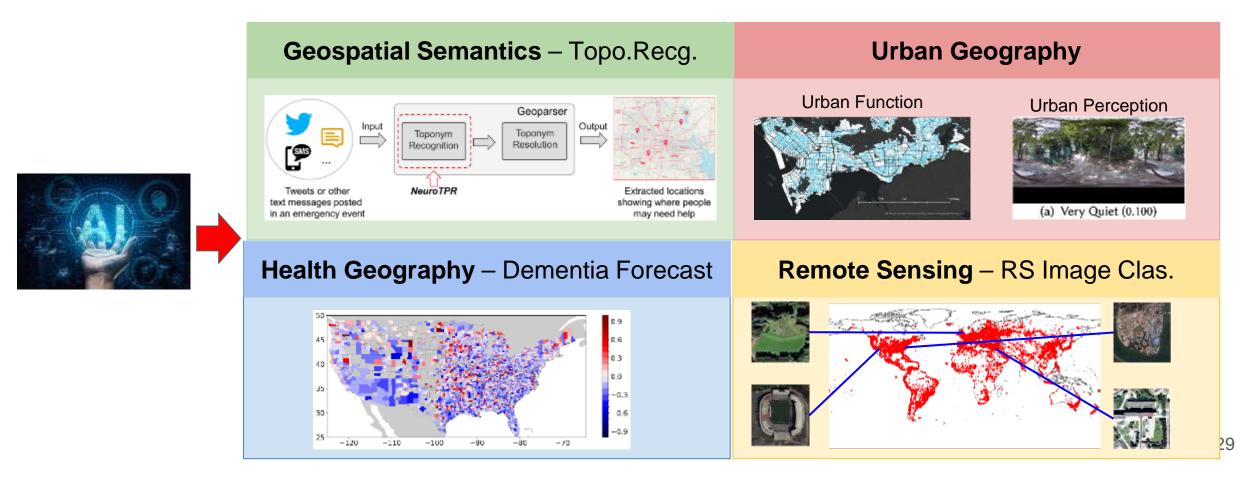
Various CV Tasks

- Text-to-image generation
- Image Completion
- Image Editing
- Style Transfer
- ..

27

AGI on Geospatial Problems

How do the existing cutting-edge foundation models perform when compared with the state-of-theart fully supervised task-specific models on various geospatial tasks?



Gengchen Mai, et al. On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence. ACM TSAS 2024

Geospatial Semantics

• Investigate the performance of **GPT-3** on some well established **geospatial semantic tasks**:

Typonym Recognition

```
[Instruction] ...

Paragraph: Alabama State Troopers say a Greenville man has died of his injuries

→ after being hit by a pickup truck on Interstate 65 in Lowndes County.

Q: Which words in this paragraph represent named places?

A: Alabama; Greenville; Lowndes

...

Paragraph: The Town of Washington is to what Williamsburg is to Virginia.

Q: Which words in this paragraph represent named places?

A: Washington; Williamsburg; Virginia
```

Location Description Recognition

^{*}toponyms: proper names of places, also known as place names and geographic names.

GPT-3 Fewshot Learning for Geospatial Semantic Tasks

Task 1 & 2: Toponym Recognition & Location Description Recognition

Typonym recognition: FMs (e.g., GPT-2/3)
 consistently outperform the fully-supervised
 baselines with only 8 few-shot examples

 Location Description Recognition: GPT-3 achieves the best Recall score across all methods

Typonym Recognition	Location
	Description
	Recognition
Toponym Recognition	Location Description Recognition

					Location Description Recognition			
	Model	#Param	Hu2014	Ju2016	Ha	veyTweet	2017	
			Accuracy ↓	Accuracy ↓	Precision ↓	Recall ↓	F-Score \	
	Stanford NER (nar. loc.) [30]	-	0.787	0.010	0.828	0.399	0.539	
	Stanford NER (bro. loc.) [30]	-	-	0.012	0.729	0.44	0.548	
	Retrained Stanford NER [30]	-	-	0.078	0.604	0.410	0.489	
(A)	Caseless Stanford NER (nar. loc.) [30]	-	-	0.460	0.803	0.320	0.458	
(A)	Caseless Stanford NER (bro. loc.) [30]	-	-	0.514	0.721	0.336	0.460	
	spaCy NER (nar. loc.) [44]	-	0.681	0.000	0.575	0.024	0.046	
	spaCy NER (bro. loc.) [44]	-	-	0.006	0.461	0.304	0.366	
	DBpedia Spotlight[99]	-	0.688	0.447	-	-	-	
	Edinburgh [7]	-	0.656	0.000	-	-	-	
(B)	CLAVIN [134]	-	0.650	0.000	-	-	-	
	TopoCluster [23]	-	0.794	0.158	-	-	-	
	CamCoder [33]	-	0.637	0.004	-	-	-	
(C)	Basic BiLSTM+CRF [77]	-	-	0.595	0.703	0.600	0.649	
(C)	DM NLP (top. rec.) [139]	-	-	0.723	0.729	0.680	0.703	
	NeuroTPR [135]	-	0.675 [†]	0.821	0.787	0.678	0.728	
	GPT2 [115]	117M	0.556	0.650	0.540	0.413	0.468	
	GPT2-Medium [115]	345M	0.806	0.802	0.529	0.503	0.515	
	GPT2-Large [115]	774M	0.813	0.779	0.598	0.458	0.518	
(D)	GPT2-XL [115]	1558M	0.869	0.846	0.492	0.470	0.481	
(D)	GPT-3 [15]	175B	0.881	0.811*	0.603	0.724	0.658	
	InstructGPT [106]	175B	0.863	0.817*	0.567	0.688	0.622	
	ChatGPT (Raw.) [104]	176B	0.800	0.696*	0.516	0.654	0.577	3
	ChatGPT (Con.) [104]	176B	0.806	0.656*	0.548	0.665	0.601	J

Health Geography

Task 4: US County-Level Dementia Time Series Forecasting

Listing 4. US county-level Alzimier time series forecasting with LLMs by zero-shot learning. Yellow block: the historical time series data of one US county. Orange box: the outputs of InstructGPT. Here, we use Santa Barbara County, CA as an example and the correct answer is 373.

Table 3. Evaluation results of various GPT models and baselines on the US county-level dementia time series forecasting task. We use same model set and evaluation metrics as Table 2.

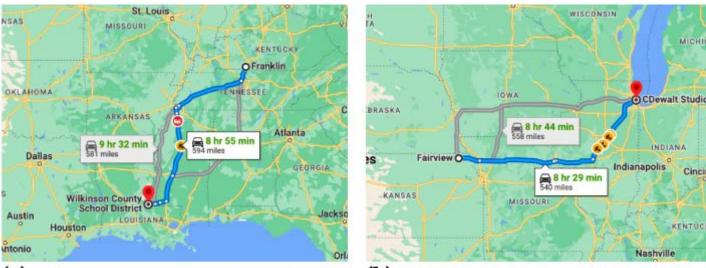
	Model	#Param	MSE ↓	MAE ↓	MAPE↓	R ² ↑
(A) Simple	Persistence [103, 107]	-	1,648	16.9	0.189	0.979
(B) Supervised ML ARIMA [58]		-	1,133	15.1	0.193	0.986
	GPT2 [115]	117M	77,529	92.0	0.587	-0.018
	GPT2-Medium [115]	345M	226,259	108.1	0.611	-2.824
	GPT2-Large [115]	774M	211,881	94.3	0.581	-1.706
(C) Zero shot LLMs	GPT2-XL [115]	1558M	162,778	99.8	0.627	-1.082
(C) Zero shot LLivis	GPT-3 [15]	175B	1,105	14.5	0.180	0.986
	InstructGPT [106]	175B	831	13.3	0.179	0.989
	ChatGPT (Raw.) [104]	176B	4,115	23.2	0.217	0.955
	ChatGPT (Con.) [104]	176B	3,402	20.7	0.231	0.944

GPT-3 Fewshot Learning for Geospatial Semantic Tasks

 Shortcoming of text FMs: by design they are unable to handle other data modality, e.g., geocoordinates, toponym resolution/geoparsing

Geoparsing [Instruction] ... Paragraph: San Jose was founded in 1803 when allotments of land were made ... Q: Which words in this paragraph represent named places? A: San Jose; New Mexico Q: What is the location of San Jose? A: 35.39728, -105.47501 ... Paragraph: the city of fairview had a population of 260 as of july 1, 2015. ... Q: Which words in this paragraph represent named places? A: Fairview Q: What is the location of Fairview? A: 41.85003, -87.65005

The predicted coordinates are not accurate



(a) [TEXT]: <u>Franklin</u> is a city in and the county seat of simpson county, ...

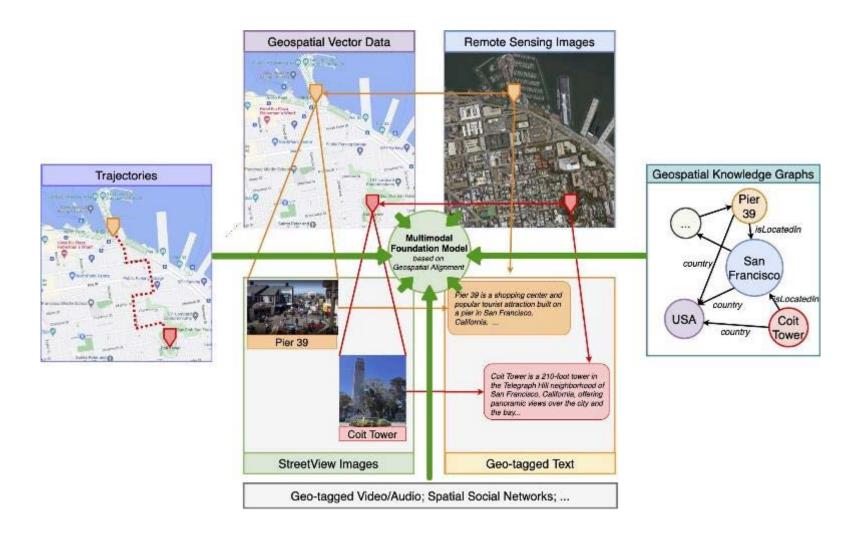
(b) [TEXT]: the city of <u>Fairview</u> had a population of 260 as of july 1, 2015. ...

Outline

- Target on a specific problem on point spatial entity
 - Geospatial IR or Spatial Keyword Search (VLDB'09--SIGMOD'23)
 - POI recommendations (SIGIR'13 --)
 - Spatial relationship extraction (SIGMOD'23)
- Self-supervised learning for geospatial entity representation
 - Road Network Representation for Road Network Applications (CIKM'21)
 - Region Representation for Region-Level Applications (KDD'23)
 - Application of Foundation Models for Geospatial Applications
 - Efforts toward City Foundation Models.

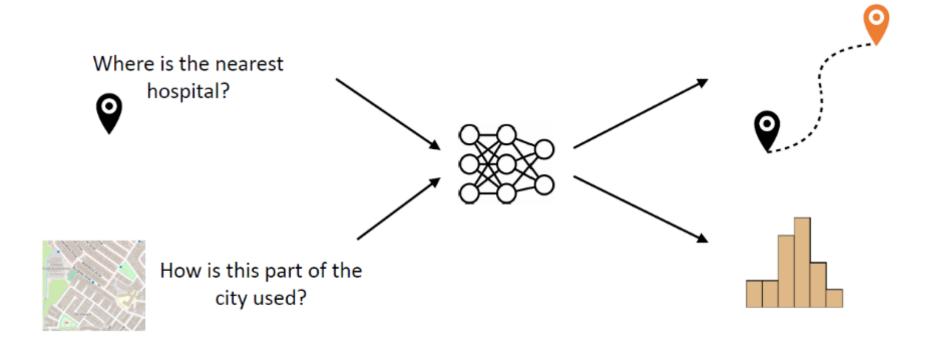
A Multimodal City FM for GeoAl

Vision: a multimodal City FM for GeoAl that use their **geospatial relationships as alignments** among **different data modalities.**



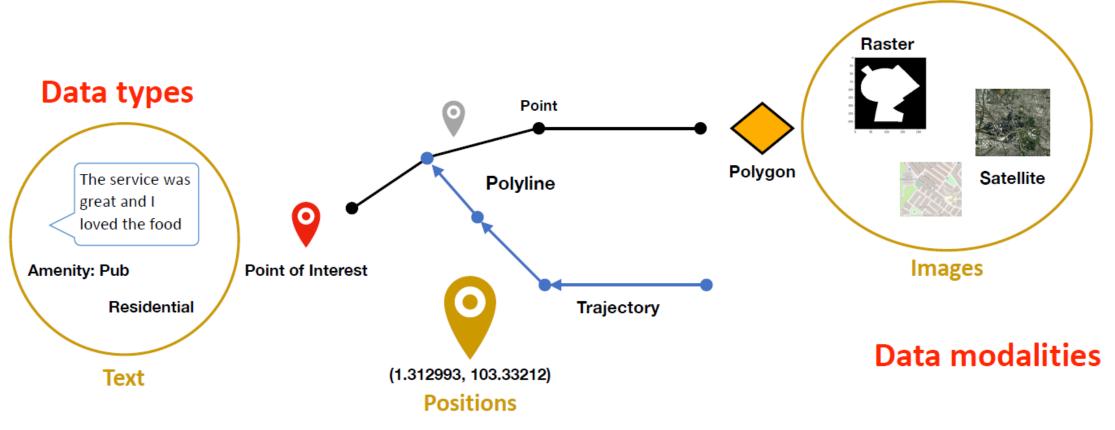
Motivations of City Foundation Models

FMs have the potential to revolutionise the way we use geospatial data



Challenges

A slower adoption of FMs in the geospatial domain... why?



Challenges

A slower adoption of FMs in the **geospatial** domain... why?

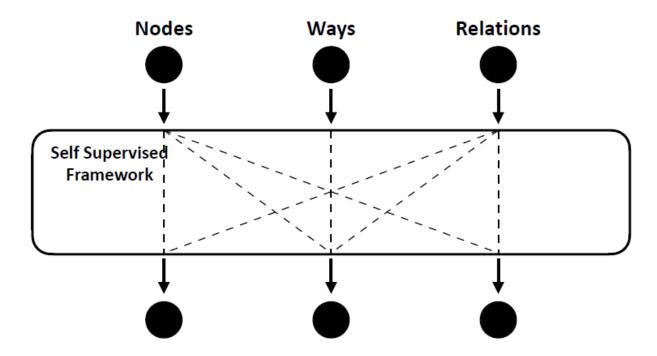
Data sources also present a challenge, different data comes from different providers, and is available in different places!

Our Attempts

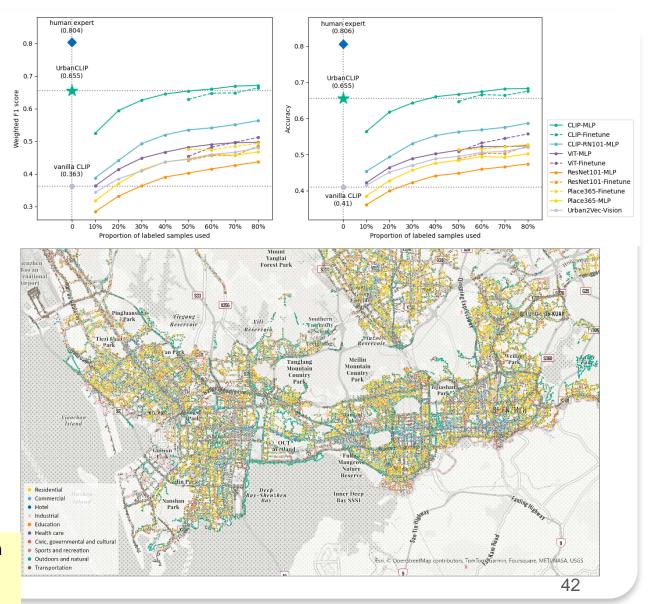
- Attempt 1: Build a "Foundation Model" from the scratch (decoding part only, 2022)
- Attempt 2: Integrate Domain Knowledge with existing Foundation Models (prompting)
- Attempt 3: Finetune existing Foundation Models with domain data/knowledge (finetuning)
 - Data preparation
 - Tokenization
 - Mixture-of-Experts
- Attempt 4: Al Agents

Attemp1: Use OpenStreetMap to Build a City Foundation Model

How to leverage the different data types and modalities in OSM, to pre-train a geospatial FM?

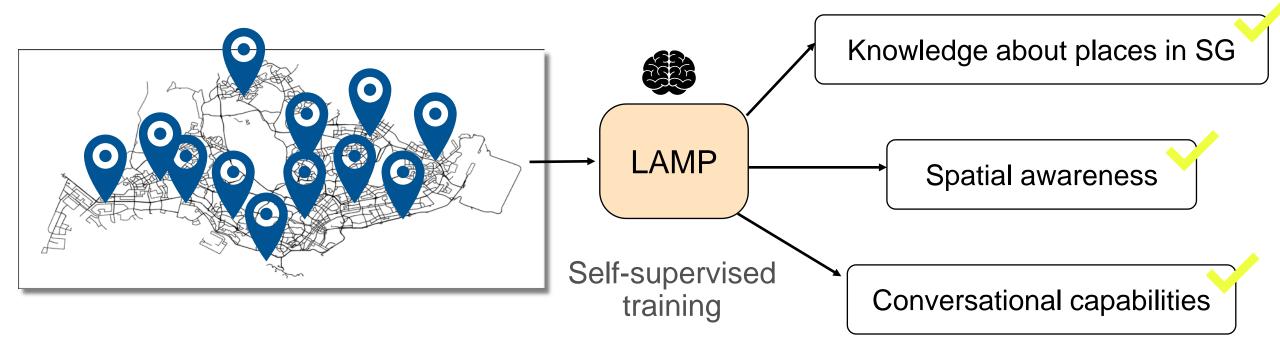


Attemp2: UrbanCLIP – a prompting framework for zero-shot urban land use inference



Huang, W., Wang, J., Cong, G. **Zero-shot urban function inference with street view images through prompting a vision-language model.** *International Journal of Geographical Information Science,* in press.

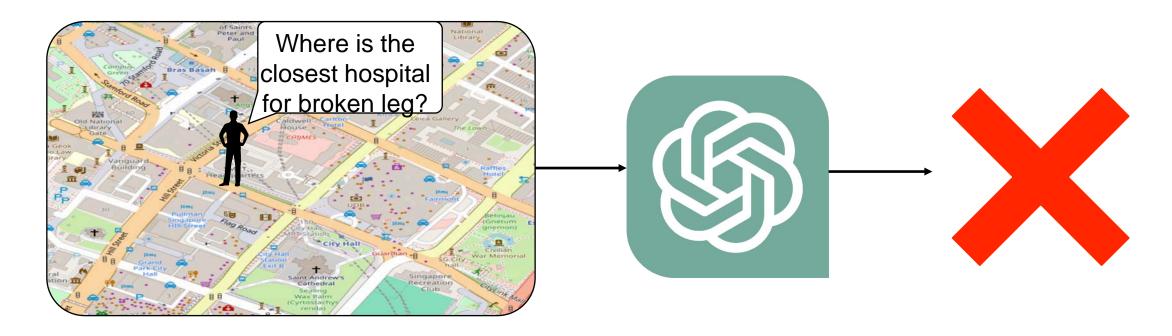
Attemp3: LAMP: A Language Model on the Map



We trained LAMP on Singapore places data, including POIs, addresses, opening hours, positions...

In this way, LAMP becomes aware of fine-grained urban places in Singapore, with a spatial sense (proximity)

LLM for conversational city search



...such general models lack city-specific knowledge!

LAMP: A Language Model on the Map

```
Current position: 81, Victoria Street, 188065, Singapore
Ouery: I'd like to have japanese food. Could you find a place nearby?
LLaMa-2-70B-Chat: Sure, I'd be happy to help! There are several Japanese restaurants near Victoria Street,
Museum, Singapore. Here are a few options:

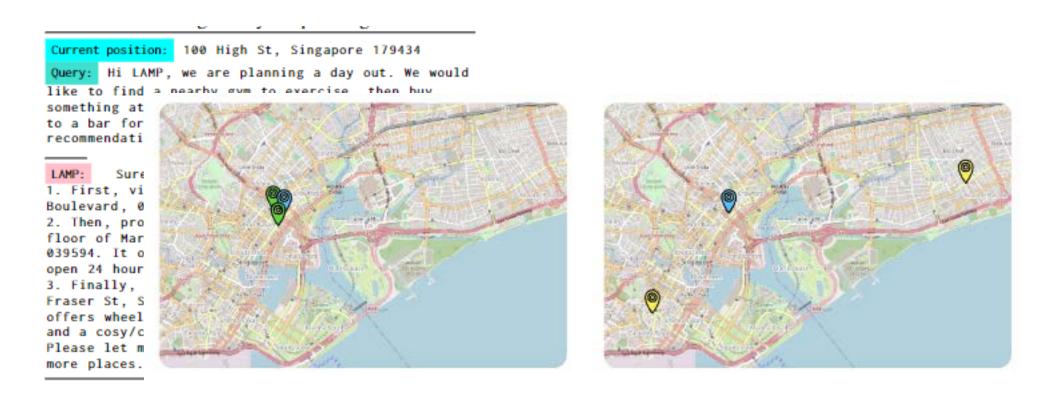
    Sushi Tei - Located at 100 Victoria Street, #01-01, Singapore 188064.

   Tsukemen Ginza - Located at 111 Middle Road, #01-01, Singapore 188969.
3. Ramen Nagi - Located at 100 Victoria Street, #01-02, Singapore 188064.
ChatGPT 3.5:
               Sure, one nearby Japanese restaurant to 81 Victoria Street, Singapore 188065 is "Shin Minori
Japanese Restaurant" located at 81 Victoria Street, #01-01, Singapore 188065.
        I found two Japanese restaurants near your location:
- Shirokiya, located at 30 Victoria Street Chijmes, #01-05/06, 187996 ,
- Gyu Kaku Japanese BBO, located at 30 Victoria Street, CHIJMES #01-01/03, 187996. It offers takeaway services and it is open
until 11pm.
Let me know if you need any more recommendations!
```

When queried to find a specific POI. ChatGPT and LLaMa-2 are prone to hallucinating, and create places that do not exist, to satisfy the user's query, often replicating the address of the user or their zip code.

hallucinated information shaded in Orange, and correct information in Green.

LAMP: A Language Model on the Map

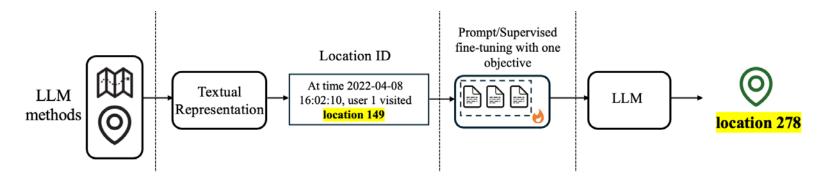


The left places are recommended by LAMP, while the right ones are from GPT-4.

Attempt 3: QTMob: tokenization

• LLMs naturally possess a comprehensive understanding of general geospatial knowledge. This has led to increasing interest in adapting LLMs for mobility data for downstream analytical tasks.

Previous LLM-based paradigm:

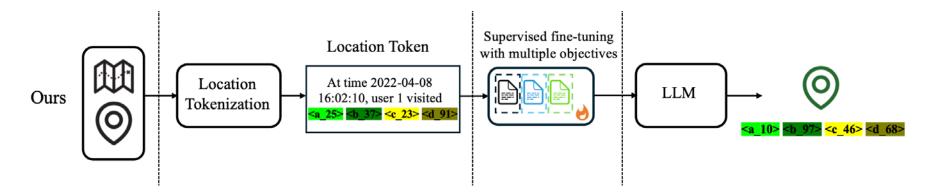


AgentMove (NAACL 2025), LLM-Move (arxiv 2024), LLM4POI (SIGIR 2024), etc.

Introduction – QTMob

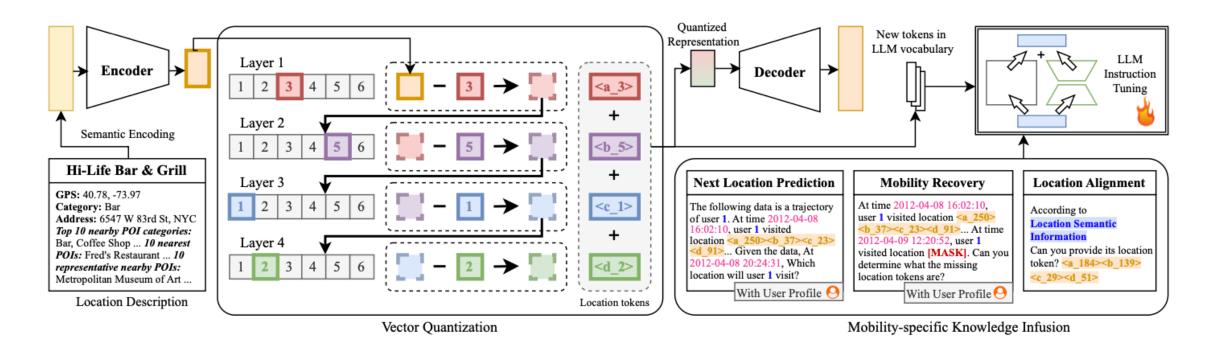
- Limitations
 - Locations as discrete IDs (e.g., "location 124")
 - Fails to encode the semantic richness and contextual information of locations
 - LLMs are not fully adapted to mobility knowledge
 - Utilize prompt engineering without additional knowledge, or fine-tuning LLMs on limited mobility instruction dataset.

Our New Paradigm:



Framework

- QT-Mob
 - Semantic Location Tokenization + Diverse instruction-tuning objectives
 - Discrete inputs with semantics
 - LLM alignment with fine-tuning



Experiments

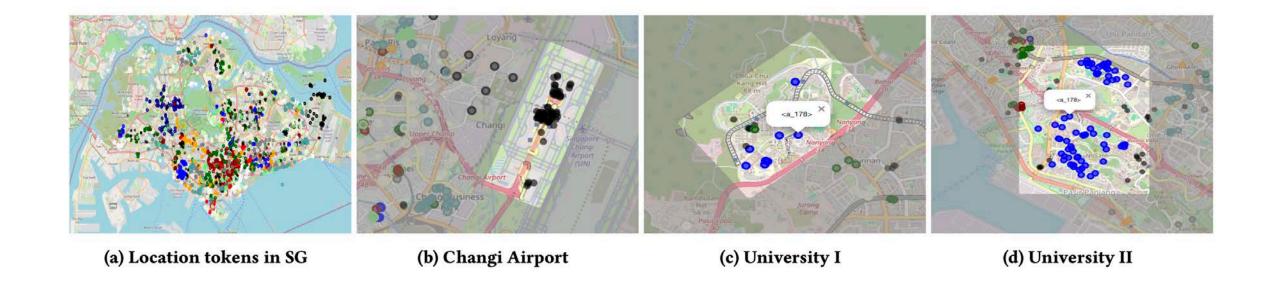
• Performance comparison

Next location prediction

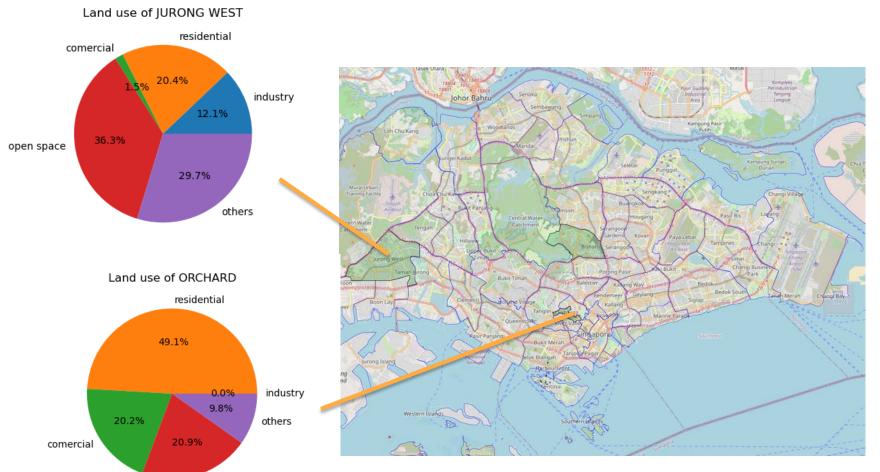
Dataset	NYC				SG				CE						
Model	Hit@1	Hit@5	Hit@10	N@5	N@10	Hit@1	Hit@5	Hit@10	N@5	N@10	Hit@1	Hit@5	Hit@10	N@5	N@10
FPMC	0.0852	0.2216	0.2661	0.1577	0.1721	0.0489	0.0966	0.1287	0.0727	0.0830	0.0317	0.0856	0.1219	0.0590	0.0706
DeepMove	0.1108	0.2105	0.2420	0.1635	0.1738	0.0520	0.1131	0.1484	0.0843	0.0956	0.0551	0.1424	0.1979	0.1000	0.1178
CTLE	0.1367	0.3031	0.3812	0.2255	0.2473	0.0628	0.1560	0.2147	0.1350	0.1538	0.0728	0.1628	0.2205	0.1232	0.1458
TrajFormer	0.0693	0.1544	0.1782	0.1283	0.1435	0.0321	0.0638	0.0980	0.0517	0.0634	0.0284	0.0547	0.0942	0.0468	0.0598
GETNext	0.1542	0.3347	0.4066	0.2433	0.2668	0.0921	0.1960	0.2509	0.1447	0.1626	0.1029	0.2426	0.3098	0.1763	0.1980
MCLP	0.1804	0.3662	0.4356	0.2791	0.3017	0.0839	0.1973	0.2590	0.1422	0.1622	0.0964	0.1929	0.2399	0.1468	0.1620
PLSPL	0.1935	0.3751	0.4507	0.2894	0.3140	0.1055	0.2061	0.2541	0.1571	0.1726	0.0976	0.2261	0.2967	0.1645	0.1872
STHGCN	0.1982	0.3821	0.4469	0.2970	0.3180	0.1246	0.2428	0.2957	0.1869	0.2041	0.0844	0.2045	0.2669	0.1462	0.1664
LLM-Move	0.1717	0.3559	0.4397	0.2803	0.3071	0.1010	0.1961	0.2457	0.1513	0.1674	0.0823	0.2078	0.2657	0.1432	0.1629
AgentMove	0.1753	0.3536	0.4377	0.2804	0.3077	0.1118	0.2046	0.2526	0.1558	0.1720	0.0836	0.2093	0.2695	0.1455	0.1650
GenUP	0.2216	0.3550	0.3784	0.2946	0.3023	0.1227	0.2152	0.2375	0.1726	0.1798	0.0935	0.2008	0.2324	0.1502	0.1605
Mobility LLM	0.1840	0.3944	0.4781	0.2949	0.3221	0.1077	0.2367	0.3045	0.1749	0.1967	0.1084	0.2623	0.3343	0.1883	0.2116
QT-Mob	0.2550	0.4073	0.4562	0.3366	0.3525	0.1514	0.2629	0.3171	0.2105	0.2281	0.1243	0.2728	0.3418	0.2021	0.2245

Experiments

Case studies reveal fascinating properties of the location tokens.



Attempt 3: NextLocMoE: semantic Mixture-of-Experts for Mobility Prediction

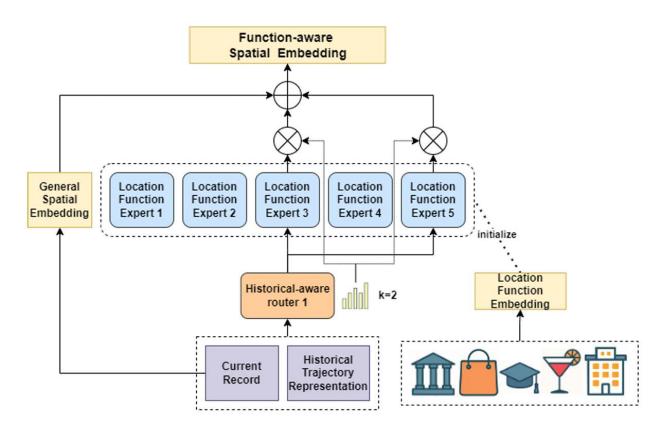


open space

- One location may serve multiple semantic roles
- A single location embedding cannot capture such multifunctional semantics

Liu, S., Cao, N., Chen, Y., Jiang, Y., & Cong, G. Mixture-of-Experts for Personalized and Semantic-Aware Next Location Prediction. On arXiv.

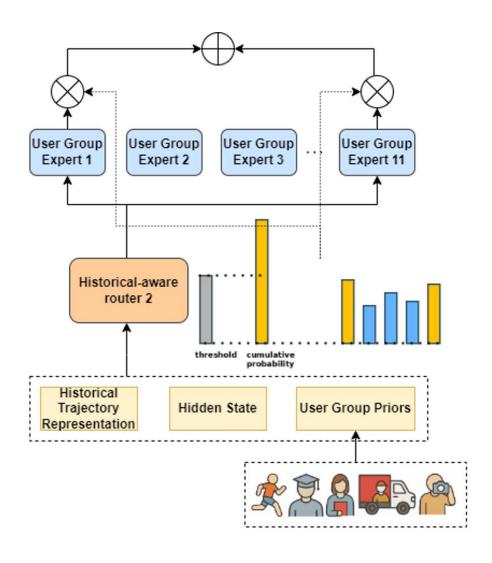
NextLocMoE: semantic Mixture-of-Experts for Mobility Prediction



Location Semantics MoE

- Enrich general spatial embedding with location function experts
- Each expert initialized by LLMencoded function descriptions
- Historical-aware router selects top-k relevant experts

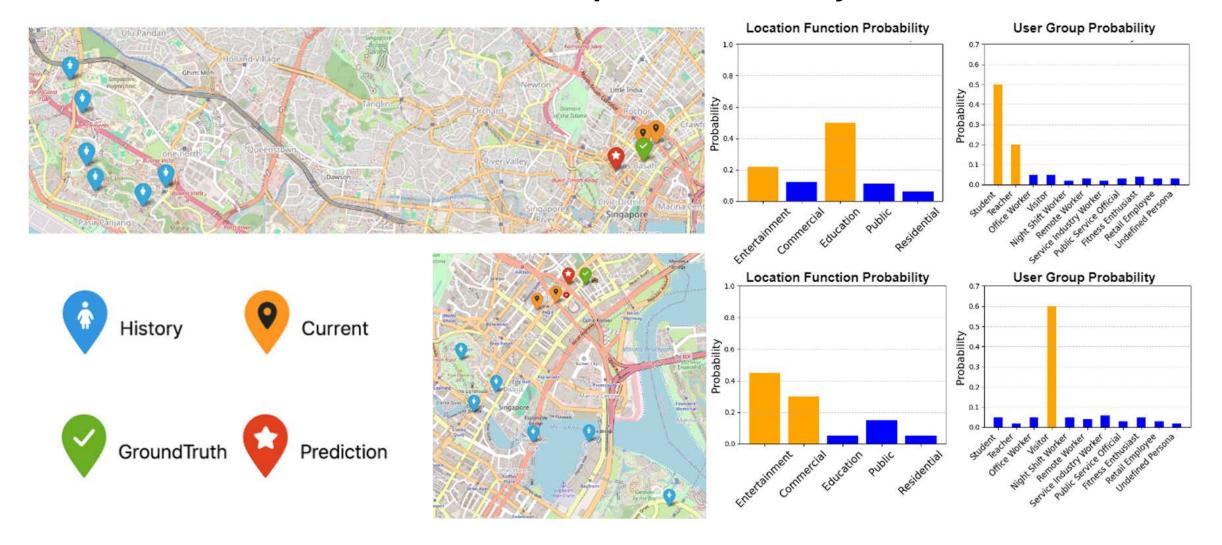
NextLocMoE: semantic Mixture-of-Experts for Mobility Prediction



Personalized MoE

- Model user heterogeneity with usergroup experts
- LLM-encoded user group descriptions provide semantic priors
- Historical-aware router → thresholdbased dynamic expert selection

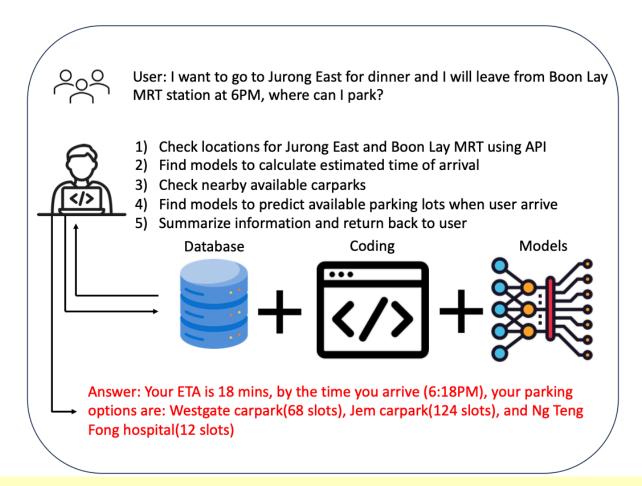
NextLocMoE: semantic Mixture-of-Experts for Mobility Prediction



Liu, S., Cao, N., Chen, Y., Jiang, Y., & Cong, G. Mixture-of-Experts for Personalized and Semantic-Aware Next Location Prediction. On arXiv

Attempt 4: Using Al agents

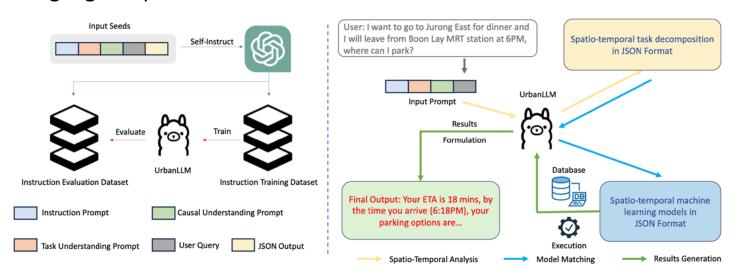
- Real-world Urban Activity Planning and Management problem are often complex
 - Involved multiple models
 - Need experienced software engineer and spatio-temporal domain experts



Yue Jiang et al, UrbanLLM: Autonomous Urban Activity Planning and Management with Large Language Models. EMNLP findings 2024

Framework

- UrbanLLM is a fine-tuned LLaMA-Series-based LLM designed to autonomously plan, manage, and reason about urban activities. Its core ideas are:
 - ☐ Instruction-Tuned Urban LLM
 - Fine-tuned on a large self-instruct dataset (≈17K examples) curated from real Singapore urban scenarios.
 - ☐ Three-Stage Inference Pipeline
 - > Spatio-Temporal Analysis: Decomposes a natural language query into structured JSON sub-tasks
 - ➤ Model Matching: Leverages a model zoo with 50+ specialized spatio-temporal AI models and selects the most suitable model for each sub-task
 - Results Generation: Executes the selected models, retrieves intermediate outputs, and composes a final, natural language response.



Experiments

We have prepared 13 spatial/temporal sub-tasks and 34 combination problems of 1700 testing scenarios.

Table 1: Evaluation for Spatio-Temporal Task Analysis

	Accuracy	Precision	Recall	F1
Llama2-7b	0.18%	10.52%	8.75%	9.18%
Vicuna-7b-v1.5	8.44%	14.08%	13.89%	13.95%
Llama3-8b	5.31%	12.96%	15.50%	13.08%
GPT-3.5	17.95%	23.25%	22.35%	22.54%
GPT-4o	<u>49.99%</u>	<u>55.31%</u>	<u>54.42%</u>	<u>54.63%</u>
UrbanLLM	68.30%	80.05%	79.26%	79.49%
% Improve	36.63%	44.73%	45.64%	45.50%

Table 2: Evaluation for Spatio-Temporal Single-Task Analysis

	Accuracy	Precision	Recall	F1
Llama2-7b	0.47%	0.57%	0.57%	0.57%
Vicuna-7b-v1.5	33.26%	33.26%	33.26%	33.26%
Llama3-8b	15.46%	17.51%	21.19%	17.97%
GPT-3.5	13.58%	13.70%	13.74%	13.71%
GPT-4o	<u>67.44%</u>	<u>68.56%</u>	<u>68.60%</u>	<u>68.57%</u>
UrbanLLM	95.78%	96.78%	96.84%	96.80%
% Improve	42.02%	41.16%	41.17%	41.17%

Table 3: Evaluation for Spatio-Temporal Multi-Task Analysis

	Accuracy	Precision	Recall	F1
Llama2-7b	0.00%	13.80%	11.44%	12.01%
Vicuna-7b-v1.5	0.08%	7.62%	7.36%	7.45%
Llama3-8b	1.81%	11.36%	13.52%	11.37%
GPT-3.5	19.35%	26.40%	25.20%	25.45%
GPT-4o	<u>40.13%</u>	<u>50.89%</u>	<u>49.68%</u>	<u>49.97%</u>
UrbanLLM	59.08%	74.47%	73.40%	73.71%
% Improve	47.22%	46.33%	47.75%	47.51%

Open problems

- What are the new applications that LLMs can bring to Spatial/GIS?
 - Beyond the current applications
 - Beyond a chatbot
 - Benchmark datasets
- How to make LLMs to have spatial abilities?
 - Spatial data/computation?
 - Spatial inference ability
 - Data preparation
 - Finetune/retrain
- Agents/Agentic Spatial RAG
 - Interact with spatial databases

References and Acknowledgement

- Shang Liu, Gao Cong, Kaiyu Feng, Wanli Gu, Fuzheng Zhang. Effectiveness Perspectives and a Deep Relevance Model for Spatial Keyword Queries. SIGMOD 2023
- Pasquale Balsebre, Dezhong Yao, Weiming Huang, Gao Cong, Zhen Hai. Mining Geospatial Relationships from Text. SIGMOD 2023
- Yile Chen, Xiucheng Li, Gao Cong, Zhifeng Bao, et al.: Robust Road Network
 Representation Learning: When Traffic Patterns Meet Traveling Semantics. CIKM 2021
- Yi Li, Weiming Huang, Gao Cong, Hao Wang, and Zheng Wang. Urban Region Representation Learning with OpenStreetMap Building Footprints. SIGKDD 2023
- Gengchen Mai, et al. . On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence. ACM TSAS 2024
- Weiming Huang, Jing Wang, Gao Cong. Zero-shot urban function inference with street view images through prompting a pre-trained vision-language model. IJGIS 2024.
- Pasquale Balsebre, Weiming Huang, Gao Cong. LAMP: A Language Model on the Map.
 On arXiv.
- Pasquale Balsebre, Weiming Huang, Gao Cong, Yi Li. Towards City Foundation Models. CIKM'24
- Yue Jiang, Qin Chao, Yile Chen, Xiucheng Li, Shuai Liu, Gao Cong, UrbanLLM:
 Autonomous Urban Activity Planning and Management with Large Language Models.
 EMNLP findings 2024
- Yile Chen, Yicheng Tao, Yue Jiang, Shuai Liu, Han Yu, Gao Cong. "Enhancing Large Language Models for Mobility Analytics with Semantic Location Tokenization, KDD'25
- Shuai Liu, Ning Cao, Yile Chen, Yue Jiang, Gao Cong. Mixture-of-Experts for Personalized and Semantic-Aware Next Location Prediction. On arXiv

Thanks my students, postdoc and collaborators

Our group website: https://st-dataminer.github.io/